1/f Noise in dye-sensitized solar cells and NIR photon detectors
نویسنده
چکیده
All electronic devices are plagued with 1/f noise originating from many causes. The most important factors contributing to 1/f noise in a semiconductor is believed to be recombination of carriers and their trapping at defects and impurity sites. Adsorption of moisture and electron acceptor molecules enhances the intensity of 1/f noise. Amazingly, some molecular species that strongly chelate to the semiconductor surface, suppress 1/f noise owing to passivation of the recombination sites. Thus in addition to sensitization, the dye adsorbed on the nanocrystallites plays a key role in mitigation of recombinations. For this reason dye-sensitized heterojunctions could also find application as low noise NIR photon detectors. Experiments conducted with oxide semiconductors (TiO2, ZnO, SnO2) indicate that the mode of binding of dyes at specific sites determines the extent to which the recombination and 1/f noise are suppressed. The transport of electrons in a nanocrystalline matrix is diffusive with a diffusion coefficient D depending on the trapping and detrapping processes. Thus passivation of trapping sites by the adsorbed dye is expected to increase the response time which can be expressed as s L/D, where L = thickness of the nanocrystalline film. Measurement techniques and construction of a dye-sensitized NIR photon detector will be
منابع مشابه
Application of azo dye as sensitizer in dye-sensitized solar cells
An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...
متن کاملHigh Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملElectron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell
The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...
متن کامل